Showing posts with label Tact.NET. Show all posts
Showing posts with label Tact.NET. Show all posts

Friday, December 30, 2016

Object Pooling and Memory Streams

The theme of this year, which I will talk about in my 2016 retrospective, has been optimization. It's been a fun journey, and I have really enjoyed getting down and dirty with profiling garbage collection, using spin waits, and aggressive inlining.

I want to end this year on a fun note: object pooling.

A great use case for this would be making HTTP requests with serialized objects. When you serialize an object, and then place it in a HttpContent object, you are probable creating several buffers (byte arrays) each time. For example, if you are using Newtonsoft to serialize an object and then adding that to a string content object for your request, then you are probably using more memory than you need. But that is getting ahead of ourselves...

Come back next week for a blog post about efficient JSON Content serialization!

For now, let's focus on building an object pool. Really all that we need is a preallocated array to store unused objects in, and then a super efficient thread safe data structure to pool (get and set) those objects.

How does pooling memory streams help us?

When you create a MemoryStream, it creates a byte array. As that byte array grows, the memory stream resizes it by allocating a new larger array and then copying your bytes into it. This is inefficient not only because it creates new objects and throws the old ones away, but also because it has to do the leg work of copying the content each time it resizes.

How can we reuse memory streams? Just set the length to zero!

Internally this will just set an index and empty the array, but the internal data structures will be preserved for future use. Thus, by putting memory streams into an object pool, we can drastically increase our efficiency.

Here is a demo of using the Tact.NET ObjectPool to pool MemoryStreams...

[Fact]
public void MemoryStreamPoolDemo()
{
    using (var pool = new ObjectPool<MemoryStream>(100, () => new MemoryStream()))
    {
        var memoryStream1 = pool.Acquire();
 
        memoryStream1.SetLength(0);
        Assert.Equal(0, memoryStream1.Capacity);
 
        memoryStream1.Write(new byte[] {1, 0, 1, 0, 1}, 0, 5);
 
        var array1 = memoryStream1.ToArray();
        Assert.Equal(5, array1.Length);
        Assert.Equal(1, array1.First());
        Assert.Equal(1, array1.First());
 
        pool.Release(memoryStream1);
 
        var memoryStream2 = pool.Acquire();
        Assert.Same(memoryStream1, memoryStream2);
 
        memoryStream2.SetLength(0);
        Assert.Equal(256, memoryStream2.Capacity);
 
        memoryStream2.Write(new byte[] { 0, 1, 0 }, 0, 3);
 
        var array2 = memoryStream2.ToArray();
        Assert.Equal(3, array2.Length);
        Assert.Equal(0, array2.First());
        Assert.Equal(0, array2.First());
    }
}

Enjoy,
Tom

Monday, October 31, 2016

IOC Container for Tact.NET

Autofac now supports .NET Core, but other IOC frameworks such as Ninject and Unity have yet to port over. While I was looking into IOC frameworks for .NET Core, I had a bad idea...I, for fun, wrote my own Container in Tact.NET!

So, why did I do this? Honestly, it was just a fun academic exercise! I do think that this is a pretty good container, and I intend to use it in some of my personal projects. Would I recommend that YOU use this? Probably not yet, but I would invite you take a look and offer feedback!

Container Design

I have broken the container into two interfaces: IContainer for registration, and IResolver for consumption. There is a abstract class, ContainerBase, that can be inherited to easily create a container that matches other frameworks; for example, I intend to create a IDependencyResolver for ASP.NET.

You may notice that the IContainer does not have any lifetime management methods, that is because ALL of them are implemented as extension methods...

Registrations

To create a new lifetime manager you have to implement the IRegistration interface. There are already implementations for quite a few:

Resolution Handlers

The last part of the container is the IResolutionHandler interface. These resolution handlers are used when an exact registration match is not found during dependency resolution. For example, the EnumerableResolutionHandler will use ResolveAll to get a collection of whatever type is being requested. Another very different example, the ThrowOnFailResolutionHandler will cause an exception to be thrown when no match can be found.

I think that is a pretty good start, but I am hoping that this will continue to grow with time.

Enjoy,
Tom

Introducing Tact.NET

I have decided to create a project to consolidate all of the utilities that I have authored over the years on this blog...

Tact.NET - A tactful collection of utilities for .NET development.

I believe that this will give me the opportunity to update old code more often, as well as develop new utilities faster. For example, the there is already an ILog interface that optimizes (thank you, Jeremy) the Caller Information Extensions I wrote about about back in May.

Everything that I add to this project will be build for the .NET Standard Library, and should support .NET Core on all platforms. Expect to see NuGet packages soon, and hopefully many more blog posts to come.

Enjoy,
Tom

Real Time Web Analytics